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Introduction The Model The HJB Equation Numerical Scheme Hedging Numerical Results

Variable annuities with GMxB

Change from defined-benefit to defined-contribution pension plans

Exposure to income and longevity risk shifts from employer to the employed

Variable annuities with protection features have gained popularity

VA+GMxB: Variable annuities with benefits

GMDB: Guaranteed minimum death benefits

GMAB: Guaranteed minimum accumulation benefits

GMIB: Guaranteed minimum income benefits

GMWB: Guaranteed minimum withdrawal benefits

(See Gerold Studer’s talk at the SAA Annual Meeting 2010 for an overview)
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Increasing popularity of GMWB with high water mark features (ratchets)

Description on the Vanguard Group website of one of their VA+GMWB
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What’s the plan for this talk?

Formulate a tractable model for a VA+GMWB contract with
high water mark withdrawal benefits

Characterize the price and worst case policy holder behavior through
a Hamilton–Jacobi–Bellman equation (partial differential equation)

Solve the HJB equation numerically

Gain insights into ...

how the price depends on the risk free rate, volatility, ...

the worst case policy holder behavior from the point of view of the issuer

how insurance companies should set the fee structure

how surrender penalties can be set to disincentivize early surrender

Derive a hedging strategy
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The financial market

Dynamics of an underlying mutual fund

dSt = St(µdt + σdWt) = St(rdt + σdBt)

where

W is a Brownian motion under the real world probability measure P

µ is the expected return rate

σ is the volatility

B is a Brownian motion under the risk-neutral probability measure Q

r is a constant risk-free rate

Market filtration

F = (Ft) generated by (St)
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The contract

Fixed maturity T , e.g. 10, 15 or 20 years
(if the policy holder dies, the policy is transferred to a beneficiary)

At t = 0, the policy holder pays a premium c = c1 + c2

The issuer sets up an account At by investing c1 in the mutual fund,
keeps c2 as a commission and charges fees at rate qAt

The holder chooses a withdrawal rate wt and a surrender time θ ≤ T

If At hits zero, the annuity account will be frozen at zero

Annuity account

dAt = ((r − q)At − wt)dt + σAtdBt , A0 = c1

with absorption at 0
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Withdrawal

Privat information

Privat events such as changes in employment status, health or family
situation is modeled with a filtration G = (Gt)

Assume: F and G are independent under Q
Information of the policy holder: H = F ∨G

High water mark Mt = sup0≤s≤t At

Withdrawal rate wt must be H-adapted

Constraints and withdrawal fees
When withdrawing below αMt , fees are charged at rate p1

For αMt < wt ≤ βMt , fees are charged at a higher rate p2

Constraint on total withdrawal:
∫ t

0 wsds ≤ γMt

Guaranteed withdrawal If the account hits 0, withdrawal is still allowed.

Income rate

f (wt ,Mt) = (1− p1)min(wt , αMt) + (1− p2)max(wt − αMt , 0), wt ≤ βMt
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Surrender

The holder can surrender the policy at an H-stopping time θ ≤ T

At time θ the issuer charges a penalty of k(θ)Aθ, returns
(1− k(θ))Aθ to the holder and terminates the contract,

where k : [0,T ]→ [0, 1] is a surrender penalty function

Typically, k(T ) = 0
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Policy holder behavior

The policy holder chooses the withdrawal strategy w and surrender time θ

Worst expected cost of the payments faced by the issuer

D(A0) = sup
w,θ

EQ
∫ θ

0
1{At=0}e

−rs f (ws,Ms)ds − EQe−rθk(θ)Aθ

−EQ
∫ θ

0
1{At>0}e

−rs [qAt + p1 min(wt , αMt ) + p2 max(wt − αMt , 0)] ds

One has A0 + D(A0) = E(A0) for

E(A0) = sup
w,θ

EQ
[∫ θ

0
e−rs f (ws,Ms)ds + e−rθ(1− k(θ))Aθ

]
worst case policy holder behavior ... not actual policy holder behavior!

The policy is correctly priced (from the issuer’s perspective) if

D(c1) = c2 ⇔ E(c1) = c1 + c2

Good news: E(A0) is attained for w , θ only depending on market information F

Bad news: The optimization problem E(A0) is not Markovian
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Adding more state variables

For given 0 ≤ t ≤ T , 0 ≤ a ≤ m, 0 ≤ z ≤ γm, w , define

dAt,a,w
s = ((r −m)At,a,w

s − ws)ds + σAt,a,w
s dBs, At,a,w

t = a

M t,a,g,w
s = m ∨ sup

t≤u≤s
At,a,m,w

u

dZ t,z,w
s = wsds, Z t,z,w

t = z

A "non-standard" standard stochastic control problem

V (t , a,m, z) = sup
w,θ

EQ
[∫ T

t
e−r(s−t)f (ws,M t,a,m,w

s )ds + e−r(θ−t)(1− k(θ))At,a,w
θ

]
where w and θ are adapted to F t

s = σ(Bs − Bt ), s ∈ [t ,T ]

One has V (0, a, a, 0) = E(a)
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The HJB equation

Theorem

V (t , a,m, z) is a viscosity solution of

min(−vt − H(a,m, v , va, vz , vaa), v − (1− k)a) = 0 for 0 < a < m, 0 ≤ z < γm
min(−vt − H0(a, v , va, vaa), v − (1− k)a) = 0 for 0 < a < m, z = γm

v(t , 0,m, z) = ψ(t ,m, z)
vm(t ,m,m, z) = 0
v(T , a,m, z) = a,

where

H(a,m, z, v , va, vz , vaa) =

sup
0≤w≤βm

{f (w ,m) + w(vz − va)} − rv + (r − q)ava +
1
2
σ2a2vaa

H0(a, v , va, vaa) = −rv + (r − q)ava +
1
2
σ2a2vaa

ψ(t ,m, z) = sup
0≤w≤βm

∫ T

t
e−r(s−t)f (ws,m)ds such that

∫ T

t
wsds ≤ γm − z.

Non-linear parabolic PDE on [0,T ]× R3 with a free boundary and unusual
boundary conditions
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Reducing the dimension

Theorem

V (t , a,m, z) = mW (t , a/m, z/m) = mW (t , x , y), where W is a viscosity solution of

min(−vt − G(x , y , v , vx , vy , vxx ), v − (1− k)x) = 0 for (x , y) ∈ (0, 1)× [0, γ)
min(−vt − G0(x , v , vx , vxx ), v − (1− k)x) = 0 for (x , y) ∈ (0, 1)× {γ}

v(t , 0, y) = ζ(t , y)
vx (t , 1, y) + yvy (t , 1, y) = v(t , 1, y)

v(T , x , y) = x ,

where

G(x , y , v , vx , vy , vxx ) =

sup
0≤u≤β

{u(vy − vx ) + f (u, 1)} − rv + (r − q)xvx +
1
2
σ2x2vxx

G0(x , v , vx , vxx ) = −rv + (r − q)xvx +
1
2
σ2x2vxx

ζ(t , y) = sup
0≤u≤β

∫ T

t
e−r(s−t)f (us, 1)ds such that

∫ T

t
usds ≤ γ − y .

Non-linear parabolic PDE on [0,T ]× [0, 1]× [0, γ] with a free boundary and
(even more) unusual boundary conditions
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Worst case strategy

The worst case withdrawal strategy ŵ(t ,At ,Mt ,Zt) is given by the
maximizer of

w 7→ f (w ,Mt) + w [Vz(t ,At ,Mt ,Zt)− Va(t ,At ,Mt ,Zt)]

The worst case surrender time is

θ = inf {t ≥ 0 : V (t ,At ,Mt ,Zt) = (1− k(t))At}

The issuer can set k(t) so that the worst case policy holder never
surrenders early
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Numerical scheme

Semi-Lagrangian scheme with an obstacle

Backwards in time

Solves an optimization problem in every time-step

Converges to the true solution if the mesh size of the
discretization goes to zero

Gives approximations to V (t , a,m, z) and the
worst case behavior ŵ and θ̂
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Hedging

The issuer can super-hedge the contract by trading in St and the money market
account

Assume V (0, c1, c1, 0) = E(c1) = c1 + c2

Start a hedging portfolio with initial capital c1 + c2

Observe St together with the actual withdrawal strategy wt and surrender time θ

Hold the amount 1{At>0}At Va(t ,At ,Mt ,Zt ) in the mutual fund

Make payments at rate f (wt ,Mt )

Keep the rest of the portfolio value in the money market account

Pay out (1− k(θ))Aθ at the surrender time θ

This will super-hedge the contract

It will exactly hedge the contract if (w , θ) equals the worst case strategy (ŵ , θ̂)

Proof: Itô’s formula
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Numerical results

Time to Maturity
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r = 0.01  vol = 0.18
r = 0.01  vol = 0.1
r = 0.01  vol = 0.3
r = 0.03  vol = 0.18

Price is increasing in σ ... not taken into account by insurance companies

Price is decreasing in r ... makes these products difficult to sell in a
low interest rate environment
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Price and hedging ratio as functions of x = a/m and y = z/m
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Worst case withdrawal and surrender
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Discouraging early surrender

Set the surrender penalty function such that

k(t) ≥ (T − t)q
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Merci!
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